Improving RAID-Based Storage Systems with Flash Memory

Rosie Wacha Scott Brandt (UCSC Advisor) John Bent, Gary Grider, James Nunez (LANL)

First Annual ISSDM/SRL Research Symposium October 20-21, 2009

Data Centers

- Lots of data
- Must be able to keep up with read and write requests
- Power is a huge concern
- Data must be stored reliably, which impacts performance

Alternatives to Hard Drives

- Storage class memory
 - Solid state, persistent storage
 - E.g. flash, magnetic memory, phase change memory
- Flash is an attractive alternative to magnetic disks
 - 5-10x lower power
 - 2x throughput
 - 10x faster random access to data
 - 3x-10x more expensive than disks

Flash SSDs Replacing Disks

- Laptops
- Sensor networks
- Virtual memory
- Satellites
- No clear solution in data centers (EuroSys '09)
 - Not cost-effective to replace
 - Caching tier only cost-effective for 10% of workloads

Phase Change Memory in Storage Systems

- RAID 6 + PCM (MASCOTS '09)
 - Storing parities on PCM >=doubles reliability
 - No performance benefit assumed
- BPFS byte-addressable persistent FS (SOSP '09)
 - Replace all disks with PCM
 - Use atomicity guarantees to do fewer writes
 - Faster than NTFS
- Neither look at power or cost of PCM

Our Solution: Replace Some Disks with Flash

- Flash Solid State Drives (SSDs) are available
 - Future work generalizing to other technologies
- RAID 4 + SSD = RAID 4S
 - Reduces load on remaining drives by up to 50%

Solid State Drives (SSDs)

	Samsung Flash SSD PB22-J (MLC)	WD VelociRaptor 10,000 RPM	
Cost	\$799.31	\$229.99	
Capacity	256 GB	300 GB	
\$/GB	\$3.12	\$0.77	
Read / Write Throughput	220 / 200 MB/s	120 / 120 MB/s	
Latency	0.1 ms	3 ms	
Power	≤ 1.5 W	≤ 6 W	

Power Simulation

- 1.5 MB/s synthetic random read workload
 - 64 KB request size
- Calculate transfer, seek, and idle times
 - Disk
 - SSD
- Vary amount of disk vs. SSD performing the workload
 - Calculate power based on workload

Disk vs. SSD Power Consumption

RAID 1 Power Reduction

- Simulated workload
 - 1.5 MB/s read
 - 64 KB requests
- Samsung SLC SSD
- Western Digital WD20EADS

Large, Sequential Writes in RAID 4

- N write requests \rightarrow N+1 writes to disk
 - N data writes and 1 parity write
- average per write request → 1+1/N writes to disk
- RAID 5 performance is same for this workload

Large, Sequential Writes in RAID 4

- N write requests \rightarrow N+1 writes to disk
 - N data writes and 1 parity write
- average per write request \rightarrow 1+1/N writes to disk
- RAID 5 performance is same for this workload

Small, Random Writes in RAID 4

• 1 write request → 2 disk reads + 2 disk writes

$$P' = P \oplus D_1 \oplus D_1'$$

RAID 4S – SSD Parity

• 1 write request → 1 disk read + 1 disk write +

1 SSD read + 1 SSD write

→ 1 disk read + 1 disk write

$$P' = P \oplus D_1 \oplus D_1'$$

RAID 4S: Use SSD for RAID 4 Parity

- RAID 5 small writes
 - -1 write \rightarrow 2 disk reads + 2 disk writes
 - k writes \rightarrow 2k reads + 2k writes
 - Avg. # I/Os per disk in stripe size N \rightarrow 4/(N+1)
- RAID 4S small writes
 - -1 write \rightarrow 1 disk read + 1 disk write
 - k writes \rightarrow k disk reads + k disk writes
 - Avg. # I/Os per disk in stripe size N \rightarrow 2/N

Small Write Performance of RAID 4S

Reduction in Average # of I/Os per Disk

Stripe width	RAID 5	RAID 4S	% reduction
3	1.33	1	25
4	1	0.67	33
5	0.8	0.5	38
10	0.4	0.22	44
50	0.08	0.041	49
100	0.04	0.020	49.5

Row-Diagonal Parity with SSD

- Replace both parity drives with SSDs
- RDP small writes
 - -1 write \rightarrow 3 disk reads + 3 disk writes
 - Avg. # I/Os per disk in stripe size N \rightarrow 6/(N+2)
- RDP SSD small writes
 - Offload both parities to SSDs
 - -1 write \rightarrow 1 disk read + 1 disk write
 - Avg. # I/Os per disk in stripe size N \rightarrow 2/N

Row-Diagonal Parity with SSD

Degraded Mode and Reconstruction

- Degraded mode
 - Reads and writes access all disks in stripe
 - Disks are more fully utilized
 - Parity SSD is more idle
 - Lower small write overhead than all-disk array
- Rebuild onto spare SSD
 - Read all data
 - Compute lost data
 - Faster than spare disk
 - Small writes don't overwhelm the parity SSD

Conclusions and Future Work

- Incorporating a small number of SSDs improves RAID
 - Lower power
 - Better performance
 - Feasible higher reliability
- Performance analysis with real workloads
- Cost / benefit analysis of adding flash
- Implement RAID 4S prototype
- Degraded mode / reconstruction